University of Surrey - Guildford
Registry
  
 

  
 
Registry > Provisional Module Catalogue - UNDER CONSTRUCTION & SUBJECT TO CHANGE
View Module List by A.O.U. and Level  Alphabetical Module Code List  Alphabetical Module Title List  Alphabetical Old Short Name List  View Menu 
2011/2 Provisional Module Catalogue - UNDER CONSTRUCTION & SUBJECT TO CHANGE
 Module Code: PHY3005 Module Title: PHOTONICS + NANOTECHNOLOGY
Module Provider: Physics Short Name: PH3-PNT
Level: HE3 Module Co-ordinator: ALLAM J Prof (Physics)
Number of credits: 10 Number of ECTS credits: 5
 
Module Availability

Module Availability:

 

Semester 2

 

Assessment Pattern

Unit(s) of Assessment

 

Weighting Towards Module Mark( %)

 

Examination

 

100%

 

Qualifying Condition(s) 

 

University general regulations refer.

 

Module Overview

The module addresses the advanced physics and technology of photonic structures and devices where the photons and/or electrons are spatially confined to dimensions comparable to their wavelength. 

 

Prerequisites/Co-requisites

PHY3022 - Light and Matter.

 

Module Aims

Specific aims are to provide students with:

 

(i)                  an introduction to the fundamentals of photon and electron confinement

 

(ii)                an overview of photonics and nanotechnology to enable the student to enter research and development in these fields.

 

(iii)               examples of the application of nanophotonics in various devices and applications,

 

(iv)              the ability to critically assess advances in nanophotonics and postulate on future directions.

 

Learning Outcomes

After successfully completing the module, the students will be able to:

 

(i)                  Explain the origin and general applications of photon and electron confinement

 

(ii)                Describe the use of quantum effects in photonic applications

 

(iii)               Illustrate the application of nanophotonics in devices for the emission and manipulation of light

 

(iv)              Hypothesize on future directions in nanophotonics

 

Module Content

A. Introduction and Review (4 hours + optional 4 hours)

 

 

1. Introduction

 

(i)                  What is photonics? What is nanotechnology?

 

(ii)                Photonics and Nanotechnology module: organisation, teaching methods, assessment

 

(iii)               A look ahead: nanophotonics and the quantum playground

 

 

2. Review of physics of photons and electrons (optional 4 hours)

 

These review lectures summarize the minimum background in Electromagnetism (EM) and Quantum Mechanics (QM) required for this module.  They also introduce concepts, methodology and nomenclature to be followed in the module. All physics undergraduates should have encountered this material already, hence these lectures are optional - but strongly recommended.

 

(i)             Wave equations: propagation, dispersion, velocities, impedance

 

(ii)           Barriers and tunnelling

 

(iii)          Confinement: standing waves, waveguides and resonant cavities

 

(iv)         Materials: dielectrics, metals, and semiconductors

 

(v)           EM waves: Maxwell’s equations and EM wave equation

 

(vi)         EM waves in dielectrics and metals

 

(vii)        Electron waves and Schrödinger equation

 

(viii)      Interaction of light and atoms

 

(ix)         Light emission and lasers

 

 

3. Waves in periodic media

 

(i)             Solution of wave equation in linear non-dispersive periodic medium

 

(ii)           Bragg reflectors, bandgaps and minibands

 

(iii)          Overview of computational methods: Fourier methods, Transfer Matrix, FDTD

 

(iv)         Electron waves in semiconductors, heterostructures and superlattices

 

 

B.  Light in Nanostructures (6 hours)

 

 

3. Photonic crystals

 

(i)             Photonics crystals and photonic bandgaps

 

(ii)           Dispersion of 1D photonic crystal

 

(iii)          Natural and man-made photonic crystals; “holey fibres”

 

(iv)         PBGs for functional photonic components

 

(v)           Dispersion control and ‘slow light’

 

 

4. Meta materials and negative refraction

 

(i)             Conditions for negative refraction

 

(ii)           Consequences for refraction, Doppler shift and Cerenkov radiation

 

(iii)          Materials and structures for negative refraction

 

(iv)         Applications: superlens, invisibility cloak, trapped light

 

 

5. Plasmonics

 

(i)      Bulk and surface plasmons

 

(ii)      Plasmons in nanoparticles

 

(iii)     Applications: from solar cells to cancer therapy

 

 

C.  Electrons in Nanostructures (4 hours)

 

 

6. Electrons Waves in Semiconductor Nanostructures

 

(i)             Density of states, dimensionality and quantum electronics

 

(ii)           Applications: tunnel diode

 

(iii)          Nanostructures as ‘artificial atoms’

 

(iv)         Excitons and Stark shifts

 

 

D. Photon-electron Interactions in Nanostructures (6 hours)

 

 

7. Advanced lasers and applications in optical communications

 

(i)      Distributed feedback (DFB) lasers and Distributed Bragg Reflectors (DBRs)

 

(ii)      Vertical Cavity Surface Emitting Lasers (VCSELs)

 

(iii)     Microdisk (whispering gallery) lasers

 

(iv)     Quantum Cascade lasers

 

 

8. An introduction to coherent and ultrafast light-matter interactions

 

(i)             Coherence and dephasing in nanostructures

 

(ii)           Rabi oscillations and self-induced transparency

 

(iii)          Microcavities, polaritons, and quantum electrodynamics

 

 

9. Selected topics from current research at Surrey , such as

 

(i)            Quantum dot lasers

 

(ii)          Carbon nanotube photonics

 

(iii)         Optical nonlinearity in nanostructures

 

(iv)        Nanotechnology for better solar cell

 

Methods of Teaching/Learning

Lectures: 20 hours of lectures/optional revision lectures

 

Private study of specified articles

 

Selected Texts/Journals

P. Prasad, Nanophotonics, Wiley, NY, 2004 [B]

 

 

Jasprit Singh, Semiconductor Devices: An Introduction, McGraw Hill, 1994

 


Last Updated

August 2010.