University of Surrey - Guildford

Registry > Module Catalogue
View Module List by A.O.U. and Level  Alphabetical Module Code List  Alphabetical Module Title List  Alphabetical Old Short Name List  View Menu 
2010/1 Module Catalogue
 Module Code: MAT2010 Module Title: FLUID DYNAMICS
Module Provider: Mathematics Short Name: MS216
Level: HE2 Module Co-ordinator: HYDON PE Prof (Maths)
Number of credits: 15 Number of ECTS credits: 7.5
Module Availability



Assessment Pattern

Unit(s) of Assessment


Weighting Towards Module Mark( %)


Coursework:  combined class test and assignment




Examination:  written examination




Qualifying Condition(s) 


A weighted aggregate mark of 40% is required to pass this module.



Module Overview
MAT1009 Classical Dynamics
Module Aims
This module introduces students to a wide variety of fluid flows. By the end of the module, students should be able to recognise dominant features of fluid motion, and to derive some simple solutions of the equations of motion. Students should also have an appreciation of the force balances that produce various classes of flows.
Learning Outcomes
Module Content

Equations of fluid motion. Particle motion, mass conservation, simple derivation of the Navier-Stokes equations, boundary conditions, Reynolds number. [2 weeks]




Inviscid flow Bernoulli’s Theorem, channel flows (including the Severn bore), stagnation-point flow, inviscid flow past a sphere, spherical bubbles. [5 weeks]




Unidirectional viscous flow Poiseuille flow in channel and cylindrical pipe, Couette flow, Taylor-Couette flow, demonstration of instability. [1.5 weeks]




Stokes flow. Equations of motion, Stokes flow past a sphere. [1 week]




Introduction to the boundary layer. Explanation of the occurrence of the boundary layer, demonstration showing boundary layers and separation (include flow past a sphere. [0.5 weeks]
Methods of Teaching/Learning

Teaching will be by lectures and problem classes. In addition to reading the lecture notes, students will learn by tackling a wide range of assessed and unassessed problems.


Autumn Semester. Three hours per week (lectures and problem classes).
Selected Texts/Journals

D. J. Acheson, Elementary Fluid Dynamics, Oxford University Press, 1990.


J. Lighthill, An Informal Introduction to Theoretical Fluid Mechanics, Oxford University Press, 1986.
Last Updated
September 10